

info@roxia.com www.roxia.com

Roxia Tower Press TP16[™]

ROYIA

BENEFITS

Da

- Oriest filter cake
- Solution Low energy and water consumption
- Sefficient cake wash
- Single cloth with fully automatic cake discharge
- Integrated Smart features

Fully Automatic & Reliable Operation

Roxia Tower Press[™] (TP) is a fully automatic pressure filter excellent for any process that requires efficient solid/liquid separation. The design follows 40 years of respected experience in the field. Roxia TP filter is a reliable production machine that delivers high performance over and over again. Horizontal pressure filtration technology provides the following benefits:

- $\times~$ Uniform cake formation in the chamber enables efficient cake wash and air drying.
- $\times~$ High-pressure diaphragm pressing ensures a more even and drier cake.
- $\times~$ A single and continuous cloth design ensures a fast and reliable cake discharge without operator intervention.

Complete filtration support

Roxia can also provide a detailed analysis of the process, filtration testing, equipment selection and sizing. Get complete service through the entire filter life cycle, modernizations, refurbishments, spare parts and maintenance support.

Roxia TP filter is ideal if you need:

- \times High production capacity
- × Dry cake
- × Clear filtrate
- \times Efficient cake washing
- × Reliable cake discharge
- \times Fully automatic & safe operation
- \times Low water and energy consumption
- \times Small footprint
- \times Low total cost of ownership

Roxia Tower Press is engineered to withstand demanding use and deliver reliable performance.

Sizes and main a	inclision	5								
Filter type	Roxia TP16									
Filter size	16	19	22	25	28	32	35	38	41	44
Filtration area (m ²)	16	19	22	25	28	32	35	38		-
Frame size (m ²)	19		25		32		38		44	
Length (m)	4.3 (with service platform ladders 5.1)									
Width (m)		3.8								
Height / 45mm chambers (m)	4.2	4.2	4.7	4.8	5.4	5.6	6.2	6.3	6.9	7.0
Height / 60mm (m)	4.6	4.6	5.3	5.4	6.1	6.3	6.9	7.2	-	
Weight / 45mm (t)	16	17	18	19	20	21	22	23	24	25
Weight / 60mm (t)	17	18	19	20	21	22	23	24		_
www.roxia.com										

Sizes and main dimensions

Pressure Filtration Principle

Slurry feed and filtration

- $\times~$ Closed filter plate pack forms filter chambers.
- $\times~$ As the slurry is pumped into the chambers, liquid passes through the filter cloth and solids remain at the top of the cloth.
- $\times~$ Filtrate flows out from the filter chamber's filtrate ports.
- \times Solid particles start to build up forming the filter cake above the filter cloth.
- \times Slurry feed continues until optimal cake thickness is achieved.

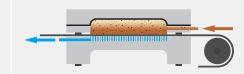
Diaphragm pressing I

- $\times~$ Using pressurized water, diaphragms squeeze the cake and finalize cake forming.
- \times Pressing continues and more filtrate is discharged.
- \times This step ends when the optimal cake structure is reached.

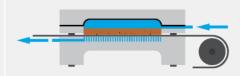
Cake washing (optional)

- \times Wash liquid is fed into the filter chamber on top of the cake.
- Pressure is pushing the wash liquid into the cake. The mother liquid gets replaced and other substances from the mother liquid are removed.
- \times This step ends when desired wash result is achieved.

Diaphragm pressing II (optional)

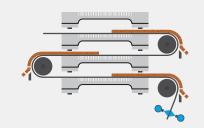

- $\times~$ Using pressurized water, diaphragms squeeze the remaining free wash liquid within the chamber through the cake.
- $\times~$ Pressing continues and discharges more filtrate.
- $\times~$ This step ends when an optimal cake structure is reached.

Air drying


- $\times~$ Pressurized air is fed into the chamber above the cake.
- $\times\;$ Air passes through the cake and dries it by replacing part of the liquid with air.
- \times This continues until the desired cake dryness is reached.


Cake discharge and cloth washing

- $\times~$ Filter plate pack opens.
- Filter cloth acts as a conveyor belt and simultaneously discharges cakes from each chamber in less than 30 seconds.
- \times During cake discharge, the filter cloth is washed from both sides.
- \times After this step is finished, the entire cycle is repeated.



Typical Application Areas

Metal concentrators	Metal refineries	Chemical industry		
Base metals	Leach residues	Graphite		
Platinum Group metals		Titanium dioxide		
Battery metals	Battery metals and other applications	Starch		
Rare Earth Elements		Industrial minerals / Organic materials		

Note! Tower press filtration technology is successfully used in approx. 200 different applications globally.

Filtration Testing and Process Support

Testing the slurry is essential before choosing the correct filter type and size. By careful testing, we can ensure the best possible process performance and the most cost-efficient solution for each solid/liquid separation application. Filtration testing can be done on-site or in the Roxia filtration laboratory.

We only require a minimum sample of 20 litres of slurry or 20 kg of dry solids.

Obtained test results:

- $\times~$ Recommendation of the most suitable filtration technology
- \times Optimal filtration parameters
- \times Achievable filtration capacity [kgDS/m2]
- × Cake moisture [%w/w]
- \times Filtrate clarity
- × Cake washing efficiency (optional)
- × Filter cloth recommendation
- × Air consumption

Tower press test unit simulates the operation of the full-scale industrial filter.

Typical concentrate slurries performance at Roxia TP filter:

Material	Cycle time (min)	Capacity (kgDS/m²h)	Production with TP16 44 (t/h)	Cake moisture (w/w%)	Availability	Air consumption (m3/h) *	Clean water consumption (m3/h) **
Iron	8 – 9	600	25 – 30	8.5		495	1.2
Lead	9–10	800	30 – 40	8		440	1.1
Copper	10 – 12	410	15 – 18	8	93 %	396	1.0
Nickel	10 – 12	440	15 – 19	7	93 %	396	1.0
Zinc	10 – 13	400	14 – 18	9 – 11		396	1.0
Starch	8 – 15	250	9 – 12	30 – 35		396	1.0

* Drying air consumption (typically 10 – 14 bar) calculated in atmosphere pressure flow ** Cloth wash water consumption. (Depends on wash time per cycle)

Safety Features

ROXIA TP filters safety features are designed according to European Machinery Directive. Other countries safety requirements are carefully followed during each delivery project.

Safety interlocks integrated into the automation program

× Protect the operators and the filter itself from accidents, failures and unintended misuse.

Perimeter protection with safety interlocked doors

- × When any of the doors open, the filter automatically stops. This prevents access to the possibly hazardous areas during the filter's operation.
- × See-through construction minimizes the need to open the door and approach the filter during operation.
- × Emergency stop buttons are located on each corner of the filter.

Safe working at height

- $\times~$ Filter comes with a caged ladder with fall arrest system.
- × Railings around the top maintenance platform protect users from falling.
- × Personnel lifts provide safe and ergonomic working environment for the plate pack maintenance.

Safe use

- Filters come with a user manual including safety instructions for safe operation and working procedures.
- × Before starting to use the filter, operators and maintenance crew receive safety training.
- × The operator interface guides users to safe use during daily operation. It also includes warnings about possible safety threats.
- Password-protected user roles secure critical filter parameters.

Easy and safe maintenance

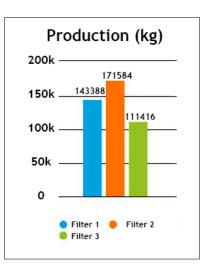
- × Filter cloth change happens at only one access point outside the filter.
- × Filter design includes extra space around the filter and enables an easy approach.
- × Check and maintenance points are easily accessible and away from the most corrosive areas.
- × Includes a remote handheld unit for safe maintenance and troubleshooting.

Perimeter protection prevents access during filter's operation, but leaves enough room for safe maintenance.

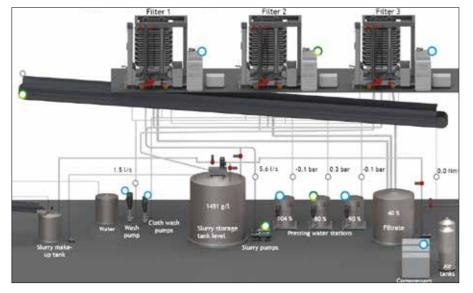
Smart Filtration

Roxia connects industrial filters to the Roxia Malibu online portal and enables remote monitoring of performance. With Smart Filtration, operators can analyse and optimize filtration process, increase production volume and detect failures before they even occur. All that can be done from anywhere with any computer, smart phone or other handheld device with internet connection.

Roxia Smart Filtration for All Filters


Roxia Smart Filtration can be installed on any filter and integrated with any other process equipment and control systems (DCS). Monitoring the filtration process online through Roxia Malibu[™] portal is easy and user-friendly. Access is possible when- and wherever with any computer, smart phone or other handheld device connected to the internet. Malibu also automatically generates user defined reports which are easy to understand. Data analysis provided by Smart Filtration can be used for comparing filter's productivity, quality changes, energy consumption, production output, to determine reasons for its waiting time, alarms and more.

Production Volume and Process Results Information


- \times Fast analysis of production numbers and process results
- × Performance comparison between multiple filters
- × Utilities comparison and OPEX reporting

Runtime Monitoring

- \times Generates utilization timeline
- \times Extracts most common alarms and reasons for downtime
- \times Reports of chosen time periods and measurements

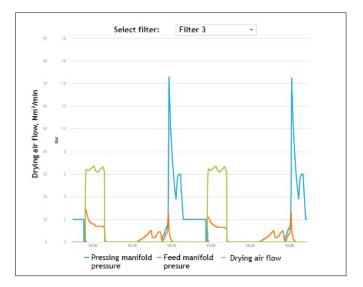
In multiple filters installation, clear comparison of production between the filters is one of the most useful KPI's for everyday use.

Live and detailed online view of the filter process plant shown on Roxia Malibu[™] portal.

YOUR BENEFITS

- Improved performance by comprehensive process understanding
 Less unplanned downtime
- Quick troubleshooting
- Efficient failure analysis

Optimize Your Filtration Process


Roxia Smart Filtration includes complete evaluation of your filtration process. Roxia professionals will help you optimize the entire filtration process to reach quality targets and to maximize production capacity.

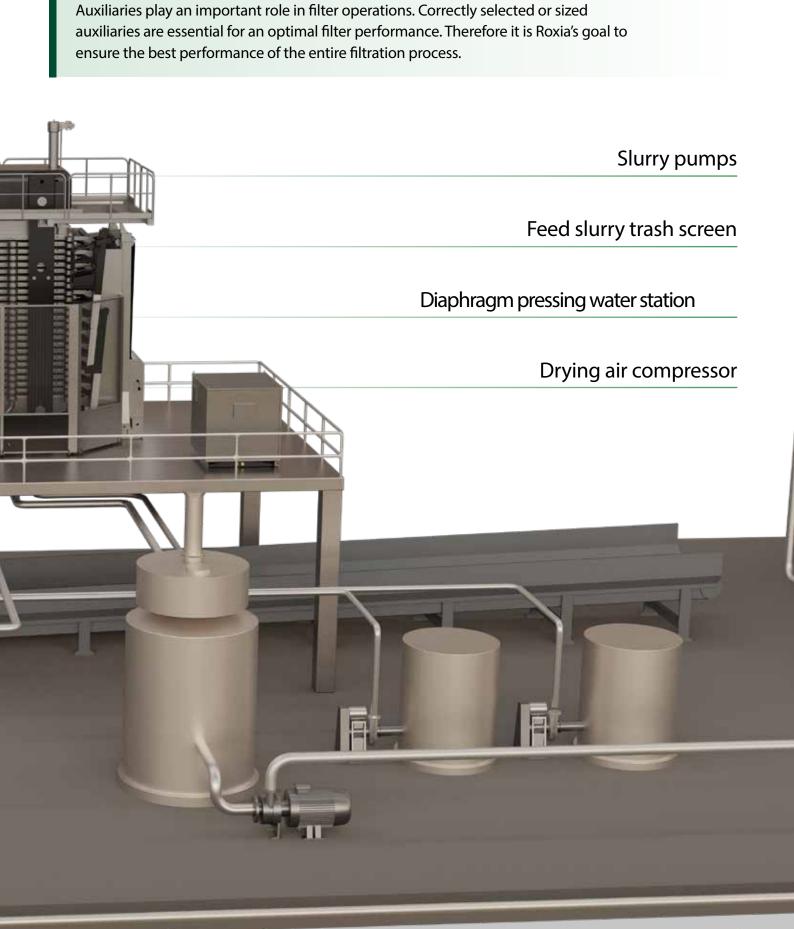
Different alarm limits can be set to automatically notify you via email about changes in the process. Optionally, additional sensors and equipment can be added for more comprehensive analytics, observations of spare part replacement intervals and assistance with auxiliary synchronizing. The tool can even detect filtration problems originating from upstream and downstream of the filter.

How Can You Benefit From Roxia Filtration Analysis?

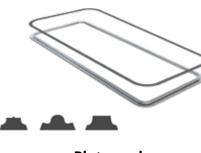
- × Discover problems in drying by following abnormalities in air pressure curves. Efficiency in drying phase can be estimated from changes in pressure. Even possible cake cracking can be detected.
- × Detect cloth and membrane damages at early stage by analyzing water volume changes.
- × Ensure product quality by analyzing cake moisture or filtrate turbidity or conductivity.
- × Discover indications of cloth damage and clogged grids and put a stop to decreased production, raised cake moisture and bending filter plates.
- Determine the reasons for waiting times. Get a real-time insight into the process: how long are the waiting times, what are the filters waiting for (slurry, air, conveyor).
 Discover the real reasons for delays and instantly improve the filtration process.

to Plan

Roxia troubleshooting tools and filtration analysis detect abnormalities in the process and automatically send alarms via email.



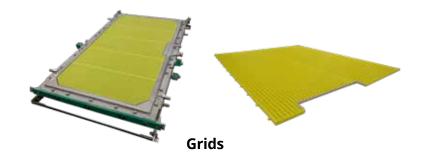
Key Performance Indicators - Tailored view according to user needs


Complete Delivery: Filter and Auxiliaries

Roxia TP filter			
Filtrate pumps			4:1
Cake discharge conv	eyor		ALADO C
Manifold flush pump	05		AAAA
	~		ROY
	F		
			-
	The rest of the local division of the local		

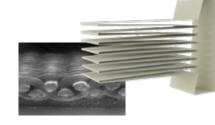
Spare parts and services

Mounting components for plate pack



Genuine Roxia spare parts

Filter plates and frames



Hoses for plate pack

Rollers and scrapers

Filter cloths

Services & Service Agreements

- imes Filtration testing and cycle optimization
- × Filter inspection
- × Maintenance support
- × Modernization, expansions and refurbishments
- imes Installations and Shutdown services
- imes Operator and maintenance staff training

Diaphragms

Pinch valves

Complete plate packs

Roxia Tower Press TP16[™]

About us

Roxia delivers high-tech dewatering and industrial automation. Specializing in mining, minerals, metallurgy, chemical, food and pharmaceutical industries, our team generates best performing solutions for each specific need.

We offer our support from Chile, China, Finland, Germany, Kazakhstan, Peru, South Africa and the United States.

Roxia Oy Myllykallionkatu 2, FI-53101 Lappeenranta, Finland Tel. + 358 201 113 311

info@roxia.com www.roxia.com in